Course curriculum
-
1
-
Google Subtitles Instructions
-
1. Simple Linear Regression - Theory
-
2. Simple Linear Regression - Code
-
-
2
-
1. Multiple Linear Regression - Theory
-
2. Multiple Linear Regression - Code
-
3. Assumptions of Linear Regression - Theory
-
4. Curse of Dimensionality - Theory
-
5. Model Accuracy and Train Test Split - Code
-
-
3
-
1. Logistic Regression - Theory
-
2. Logistic Regression - Code
-
-
4
-
1. Decision Tree - Theory
-
2. Cross-Validation & Hyperparameter Tuning - Theory
-
3. Decision Tree Classifier - Code
-
4. Decision Tree Classifier with Hyperparameter Tuning - Code
-
5. Decision Tree Regressor - Code
-
6. Decision Tree Regressor with Hyperparameter Tuning - Code
-
-
5
-
1. Random Forest - Theory
-
2. Random Forest Classifier - Code
-
3. Random Forest Classifier with Hyperparameter Tuning - Code
-
4. Random Forest Regressor - Code
-
5. Random Forest Regressor with Hyperparameter Tuning - Code
-
-
6
-
1. Ensembling Models - Theory
-
2. Model Ensembling - Code
-
3. Unsupervised vs. Supervised Learning + Summary of NLP and Deep Learning - Theory
-
-
7
-
1. Stepwise Selection - Theory
-
2. Stepwise Selection - Code
-
3. Label Encoding - Theory
-
4. Label Encoding - Code
-
5. Dummification - Theory
-
6. Dummification - Code
-
7. KNN - Theory
-
8. KNN - Code
-
9. Data Cleaning Walkthrough 1 (Housing Prices) - Code
-
10. Data Cleaning Walkthrough 2 (Titanic) - Code
-
-
8
-
1. Simple Linear Regression in R - Code
-
2. Multiple Linear Regression in R - Code
-
3. Logistic Regression in R - Code
-
4. Decision Tree in R - Code
-
5. Random Forest in R - Code
-
6. R Data Cleaning Example Part 1 - Code
-
7. R Data Cleaning Example Part 2 - Code
-